Distinguishability Operations and Closures on Regular Languages
نویسندگان
چکیده
In this paper we study the language of the words that, for a given language L, distinguish between pairs of different left-quotients of L. We characterize this distinguishability operation, show that its iteration has always a fixed point, and we generalize this result to operations derived from closure operators and Boolean operators. We give an upper bound for the state complexity of the distinguishability, and prove its tightness. We show that the set of minimal words that can be used to distinguish between different quotients of a language L has at most n − 1 elements, where n is the state complexity of L, and we also study the properties of its iteration.
منابع مشابه
The distinguishability operation on regular languages
In this paper we study the language of the words that, for a given language L, distinguish between pairs of different left-quotients of L. We characterize this distinguishability operation, show that its iteration has always a fixed point, and we generalize this result to operations derived from closure operators and Boolean operators. We give an upper bound for the state complexity of the dist...
متن کاملOn the dissimilarity operation on finite languages
The distinguishability language of a regular language L is the set of words distinguishing between pairs of words under the Myhill-Nerode equivalence induced by L, i.e., between pairs of distinct left quotients of L. The similarity relation induced by a language L is a similarity relation inspired by the Myhill-Nerode equivalence and it was used to obtain compact representation of automata for ...
متن کاملOn the state complexity of closures and interiors of regular languages with subwords and superwords
The downward and upward closures of a regular language L are obtained by collecting all the subwords and superwords of its elements, respectively. The downward and upward interiors of L are obtained dually by collecting words having all their subwords and superwords in L, respectively. We provide lower and upper bounds on the size of the smallest automata recognizing these closures and interior...
متن کاملLearning Reversible Languages with Terminal Distinguishability
k-reversible languages are regular ones that offer interesting properties under the point of view of identification of formal languages in the limit. Different methods have been proposed to identify k-reversible languages in the limit from positive samples. Non-regular language classes have been reduced to regular reversible languages in order to solve their associated learning problems. In thi...
متن کاملMultidimensional fuzzy finite tree automata
This paper introduces the notion of multidimensional fuzzy finite tree automata (MFFTA) and investigates its closure properties from the area of automata and language theory. MFFTA are a superclass of fuzzy tree automata whose behavior is generalized to adapt to multidimensional fuzzy sets. An MFFTA recognizes a multidimensional fuzzy tree language which is a regular tree language so that for e...
متن کامل